Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Masaki Kakeya, Takashi Fujihara\* and Akira Nagasawa

Department of Chemistry, Faculty of Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

#### Key indicators

Single-crystal X-ray study T = 297 KMean  $\sigma(\text{C-C}) = 0.012 \text{ Å}$  R factor = 0.053 wR factor = 0.136Data-to-parameter ratio = 25.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Di-µ-chloro-bis[diacetonitriledichloroniobium(III)] acetonitrile disolvate

The title compound,  $[Nb_2(\mu-Cl)_2Cl_4(CH_3CN)_4]\cdot 2CH_3CN$ , is a centrosymmetric dinuclear niobium complex containing an Nb<sup>III</sup>—Nb<sup>III</sup> double bond [2.8577 (9) Å]. The Nb atom has a distorted octahedral coordination environment formed by two terminal Cl atoms [Nb-Cl = 2.3761 (14) and 2.3853 (15) Å], two acetonitrile ligands [Nb-N = 2.301 (4) and 2.309 (4) Å] and two  $\mu$ -Cl atoms [Nb-Cl = 2.3356 (13) and 2.3358 (13) Å].

#### Comment

Transition metal complexes containing acetonitrile (CH<sub>3</sub>CN) as a ligand are utilized as precursors in various substitution reactions. Previously reported niobium complexes with coordinated CH<sub>3</sub>CN include mononuclear [NbCl<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (Benton, Drew & Rice 1981), dinuclear [Nb<sub>2</sub>Cl<sub>4</sub>- $(\mu$ -OCH<sub>3</sub>)<sub>2</sub>(OCH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (Cotton *et al.*, 1987) and tetranuclear [Nb<sub>4</sub>Br<sub>4</sub>( $\mu$ -Br)<sub>6</sub>( $\mu$ -Se)<sub>3</sub>(CH<sub>3</sub>CN)<sub>4</sub>] (Benton, Drew, Hobson & Rice, 1981). We report here the title compound, (I), which is a dinuclear niobium complex with four terminal CH<sub>3</sub>CN ligands.



The Nb complex in (I) is centrosymmetric and contains the dinuclear unit  $[Nb_2(\mu-Cl)_2]$  (Fig. 1 and Table 1). In general, the Nb<sup>IV</sup>-Nb<sup>IV</sup> distance is greater than 2.86 Å. On the other hand, the Nb<sup>III</sup>=Nb<sup>III</sup> bond distance is in the range 2.60–2.86 Å. The Nb1-Nb(-x, 1 - y, -z) distance of 2.8577 (9) Å in (I) indicates an Nb=Nb double bond, as found in a previously reported dinuclear Nb<sup>III</sup> complex,  $[Nb_2Cl_4(\mu-OCH_3)_2(OCH_3)_2(CH_3CN)_2]$ , (II) (Cotton *et al.*, 1987). The terminal Nb-Cl bond lengths [2.3761 (14) and 2.3853 (15) Å] are shorter than those in (II) [mean 2.445 (5) Å]. The Nb-( $\mu$ -Cl) bond lengths are 2.3356 (13) and 2.3358 (13) Å. The geometric parameters for coordinated CH<sub>3</sub>CN ligands in (I) are comparable with the values reported for related compounds.

### **Experimental**

Reactions were carried out under an atmosphere of purified argon, using standard Schlenk techniques. To a 100 ml Schlenk tube containing NbCl<sub>5</sub> (2.9 g, 0.011 mol) and Mg (0.90 g, 0.037 mol) was added acetonitrile (30 ml, 0.93 mol). The solution changed from yellow to black after stirring for 17 h at room temperature. The

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 17 May 2004 Accepted 25 May 2004 Online 5 June 2004



#### Figure 1

A view of the complex molecule in (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. Atoms labeled with a prime are at the symmetry position (-x, 1 - y, -z).

resulting precipitate was removed by filtration and the filtrate was concentrated to dryness, leaving a black powder. The crude product was washed with hexane  $(3 \times 10 \text{ ml})$  and dried under reduced pressure. Compound (I) thus obtained was recrystallized from aceto-nitrile-toluene-diethyl ether (5 : 2 : 2 v/v) at 253 K to give black crystals (1.0 g, 17% yield). IR (KBr, cm<sup>-1</sup>): 2230 (C=N); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, TMS<sub>int</sub>, p.p.m.): 2.00 (*s*, 3H, CH<sub>3</sub>CN).

#### Crystal data

| $[Nb_2Cl_6(C_2H_3N)_4]\cdot 2C_2H_3N$ | Z = 1                                     |
|---------------------------------------|-------------------------------------------|
| $M_r = 644.84$                        | $D_x = 1.706 \text{ Mg m}^{-3}$           |
| Triclinic, $P\overline{1}$            | Mo $K\alpha$ radiation                    |
| a = 8.331 (2)  Å                      | Cell parameters from 1556                 |
| b = 8.997 (2) Å                       | reflections                               |
| c = 9.341 (2) Å                       | $\theta = 2.4-27.7^{\circ}$               |
| $\alpha = 105.851 \ (4)^{\circ}$      | $\mu = 1.56 \text{ mm}^{-1}$              |
| $\beta = 108.501 \ (4)^{\circ}$       | T = 297 (2)  K                            |
| $\gamma = 94.671 \ (4)^{\circ}$       | Block, black                              |
| $V = 627.8 (2) \text{ Å}^3$           | $0.45 \times 0.32 \times 0.24 \text{ mm}$ |
| Data collection                       |                                           |
| Bruker SMART APEX CCD area-           | 3077 independent reflections              |

| Bruker SMART APEX CCD area-            |
|----------------------------------------|
| detector diffractometer                |
| $\varphi$ and $\omega$ scans           |
| Absorption correction: multi-scan      |
| (SADABS; Sheldrick, 1996)              |
| $T_{\min} = 0.540, \ T_{\max} = 0.691$ |
| 4583 measured reflections              |

3077 independent reflections 2457 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$  $\theta_{max} = 28.3^{\circ}$  $h = -11 \rightarrow 9$  $k = -11 \rightarrow 11$  $l = -11 \rightarrow 12$ 

## Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0782P)^2]$                  |
|---------------------------------|----------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.053$ | + 0.0314P]                                               |
| $vR(F^2) = 0.136$               | where $P = (F_o^2 + 2F_c^2)/3$                           |
| S = 1.06                        | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| 3077 reflections                | $\Delta \rho_{\rm max} = 1.34 \text{ e} \text{ Å}^{-3}$  |
| 21 parameters                   | $\Delta \rho_{\rm min} = -0.97  {\rm e}  {\rm \AA}^{-3}$ |
| H-atom parameters constrained   |                                                          |

# Table 1

Selected geometric parameters (Å, °).

| Nb1-N1                  | 2.301 (4)   | Nb1-Cl2                   | 2.3761 (14) |
|-------------------------|-------------|---------------------------|-------------|
| Nb1-N2                  | 2.309 (4)   | Nb1-Cl3                   | 2.3853 (15) |
| Nb1-Cl1 <sup>i</sup>    | 2.3356 (13) | Nb1-Nb1 <sup>i</sup>      | 2.8577 (9)  |
| Nb1-Cl1                 | 2.3358 (13) |                           |             |
| N1-Nb1-N2               | 81.22 (17)  | Cl1 <sup>i</sup> -Nb1-Cl1 | 104.57 (4)  |
| N1-Nb1-Cl1 <sup>i</sup> | 84.86 (12)  | Cl1 <sup>i</sup> -Nb1-Cl2 | 98.70 (5)   |
| N2-Nb1-Cl1 <sup>i</sup> | 166.01 (12) | Cl2-Nb1-Cl3               | 157.44 (5)  |
| N1-Nb1-Cl1              | 170.38 (12) | Nb1 <sup>i</sup> -Cl1-Nb1 | 75.43 (4)   |
| N2-Nb1-Cl1              | 89.39 (12)  |                           |             |
|                         |             |                           |             |

Symmetry code: (i) -x, 1 - y, -z.

All H atoms were placed in calculated positions, with C–H = 0.96 Å, and refined in a riding model, with  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}$  (carrier atom).

Data collection: *SMART-W2K/NT* (Bruker, 2003); cell refinement: *SAINT-W2K/NT* (Bruker, 2003); data reduction: *SAINT-W2K/NT*; program(s) used to solve structure: *SHELXTL-NT* (Bruker, 2003); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL-NT*.

### References

Benton, A. J., Drew, M. G. B., Hobson, R. J. & Rice, D. A. (1981). J. Chem. Soc. Dalton Trans. pp. 1304–1309.

Benton, A. J., Drew, M. G. B. & Rice, D. A. (1981). J. Chem. Soc. Chem. Commun. pp. 1241–1242.

Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6) and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

Cotton, F. A., Diebold, M. P. & Rosh, W. J. (1987). *Inorg. Chem.* 26, 3319–3322. Farrugia, L. J. (1997). *J. Appl. Cryst.* 30, 565.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.