Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Masaki Kakeya, Takashi Fujihara* and Akira Nagasawa

Department of Chemistry, Faculty of Science, Saitama University, Shimo-Okubo 255,
Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail:
fuji@chem.saitama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.053$
$w R$ factor $=0.136$
Data-to-parameter ratio $=25.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-chloro-bis[diacetonitriledichloroniobium(III)] acetonitrile disolvate

The title compound, $\left[\mathrm{Nb}_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$, is a centrosymmetric dinuclear niobium complex containing an $\mathrm{Nb}^{\text {III }}=\mathrm{Nb}^{\text {III }}$ double bond $[2.8577$ (9) \AA]. The Nb atom has a distorted octahedral coordination environment formed by two terminal Cl atoms $[\mathrm{Nb}-\mathrm{Cl}=2.3761$ (14) and 2.3853 (15) \AA], two acetonitrile ligands $[\mathrm{Nb}-\mathrm{N}=2.301$ (4) and 2.309 (4) \AA] and two $\mu-\mathrm{Cl}$ atoms $[\mathrm{Nb}-\mathrm{Cl}=2.3356$ (13) and 2.3358 (13) \AA].

Comment

Transition metal complexes containing acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ as a ligand are utilized as precursors in various substitution reactions. Previously reported niobium complexes with coordinated $\mathrm{CH}_{3} \mathrm{CN}$ include mononuclear $\left[\mathrm{NbCl}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ (Benton, Drew \& Rice 1981), dinuclear $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{4^{-}}\right.$ $\left(\mu-\mathrm{OCH}_{3}\right)_{2}\left(\mathrm{OCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$] (Cotton et al., 1987) and tetranuclear $\left[\mathrm{Nb}_{4} \mathrm{Br}_{4}(\mu \text { - } \mathrm{Br})_{6}(\mu-\mathrm{Se})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ (Benton, Drew, Hobson \& Rice, 1981). We report here the title compound, (I), which is a dinuclear niobium complex with four terminal $\mathrm{CH}_{3} \mathrm{CN}$ ligands.

(I)

The Nb complex in (I) is centrosymmetric and contains the dinuclear unit $\left[\mathrm{Nb}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (Fig. 1 and Table 1). In general, the $\mathrm{Nb}^{\text {IV }}-\mathrm{Nb}^{\text {IV }}$ distance is greater than $2.86 \AA$. On the other hand, the $\mathrm{Nb}^{\text {III }}=\mathrm{Nb}^{\text {III }}$ bond distance is in the range $2.60-$ $2.86 \AA$. The $\mathrm{Nb} 1-\mathrm{Nb}(-x, 1-y,-z)$ distance of 2.8577 (9) \AA in (I) indicates an $\mathrm{Nb}=\mathrm{Nb}$ double bond, as found in a previously reported dinuclear $\mathrm{Nb}^{\text {III }}$ complex, $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{4}(\mu-\right.$ $\left.\mathrm{OCH}_{3}\right)_{2}\left(\mathrm{OCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$], (II) (Cotton et al., 1987). The terminal $\mathrm{Nb}-\mathrm{Cl}$ bond lengths [2.3761 (14) and $2.3853(15) \AA$ A are shorter than those in (II) [mean 2.445 (5) \AA]. The $\mathrm{Nb}-(\mu$ Cl) bond lengths are 2.3356 (13) and 2.3358 (13) \AA. The geometric parameters for coordinated $\mathrm{CH}_{3} \mathrm{CN}$ ligands in (I) are comparable with the values reported for related compounds.

Experimental

Reactions were carried out under an atmosphere of purified argon, using standard Schlenk techniques. To a 100 ml Schlenk tube containing $\mathrm{NbCl}_{5}(2.9 \mathrm{~g}, 0.011 \mathrm{~mol})$ and $\mathrm{Mg}(0.90 \mathrm{~g}, 0.037 \mathrm{~mol})$ was added acetonitrile ($30 \mathrm{ml}, 0.93 \mathrm{~mol}$). The solution changed from yellow to black after stirring for 17 h at room temperature. The

Figure 1
A view of the complex molecule in (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. Atoms labeled with a prime are at the symmetry position $(-x, 1-y,-z)$.
resulting precipitate was removed by filtration and the filtrate was concentrated to dryness, leaving a black powder. The crude product was washed with hexane $(3 \times 10 \mathrm{ml})$ and dried under reduced pressure. Compound (I) thus obtained was recrystallized from aceto-nitrile-toluene-diethyl ether ($5: 2: 2 \mathrm{v} / \mathrm{v}$) at 253 K to give black crystals ($1.0 \mathrm{~g}, 17 \%$ yield). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2230(\mathrm{C} \equiv \mathrm{N}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}_{\text {int }}$, p.p.m.): $2.00\left(s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}\right)$.

Crystal data

$\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	$Z=1$
$M_{r}=644.84$	$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.331(2) \AA$	Cell parameters from 1556
$b=8.997(2) \AA$	reflections
$c=9.341(2) \AA$	$\theta=2.4-27.7^{\circ}$
$\alpha=105.851(4)^{\circ}$	$\mu=1.56 \mathrm{~mm}^{-1}$
$\beta=108.501(4)^{\circ}$	$T=297(2) \mathrm{K}$
$\gamma=94.671(4)^{\circ}$	Block, black
$V=627.8(2) \AA^{3}$	$0.45 \times 0.32 \times 0.24 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.540, T_{\text {max }}=0.691$
4583 measured reflections
$Z=1$
$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1556
reflections
$\theta=2.4-27.7^{\circ}$
$\mu=1.56 \mathrm{~mm}^{-1}$
Block, black
$0.45 \times 0.32 \times 0.24 \mathrm{~mm}$

3077 independent reflections
2457 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-11 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-11 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0782 P)^{2} \\
&+0.0314 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.136$
$S=1.06$
3077 reflections
121 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Nb} 1-\mathrm{N} 1$	$2.301(4)$	$\mathrm{Nb} 1-\mathrm{Cl} 2$	$2.3761(14)$
$\mathrm{Nb} 1-\mathrm{N} 2$	$2.309(4)$	$\mathrm{Nb} 1-\mathrm{Cl} 3$	$2.3853(15)$
$\mathrm{Nb} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.3356(13)$	$\mathrm{Nb} 1-\mathrm{Nb} 1^{\mathrm{i}}$	$2.8577(9)$
$\mathrm{Nb} 1-\mathrm{Cl} 1$	$2.3358(13)$		
$\mathrm{N} 1-\mathrm{Nb} 1-\mathrm{N} 2$	$81.22(17)$	$\mathrm{Cl}^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{Cl} 1$	$104.57(4)$
$\mathrm{N} 1-\mathrm{Nb} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$84.86(12)$	$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{Cl} 2$	$98.70(5)$
$\mathrm{N} 2-\mathrm{Nb} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$166.01(12)$	$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Cl} 3$	$157.44(5)$
$\mathrm{N} 1-\mathrm{Nb} 1-\mathrm{Cl} 1$	$170.38(12)$	$\mathrm{Nb} 1^{\mathrm{i}}-\mathrm{Cl} 1-\mathrm{Nb} 1$	$75.43(4)$
$\mathrm{N} 2-\mathrm{Nb} 1-\mathrm{Cl} 1$	$89.39(12)$		

Symmetry code: (i) $-x, 1-y,-z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and refined in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: SMART-W2K/NT (Bruker, 2003); cell refinement: SAINT-W2K/NT (Bruker, 2003); data reduction: SAINT-W2K/NT; program(s) used to solve structure: SHELXTL-NT (Bruker, 2003); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL-NT.

References

Benton, A. J., Drew, M. G. B., Hobson, R. J. \& Rice, D. A. (1981). J. Chem. Soc. Dalton Trans. pp. 1304-1309.
Benton, A. J., Drew, M. G. B. \& Rice, D. A. (1981). J. Chem. Soc. Chem. Commun. pp. 1241-1242.
Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6) and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Diebold, M. P. \& Rosh, W. J. (1987). Inorg. Chem. 26, 3319-3322.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

